
Linguistic Theory and Grammar Formalisms: Trale – Syntax 1

How to write a Trale grammar

This is meant as introduction and for basic reference. See § 1 be-
low for pointers to more detailed reading and sample grammars
to get a better understanding of Trale.
Trale is an extension of ALE, an older grammar writing soft-
ware, based on the programming language Prolog. Previous ex-
posure to Prolog is a plus. Slightly modified Prolog code may be
used within Trale.

1 Links

If you haven’t installed and tried Trale yet, seeHow to install and
run Trale.
To learn more about Trale and Trale grammars you should con-
sult the Trale manual.1 and/or see the Trale download web
page with more links, including more detailed documentation.
2 There is also a textbook that provides a good introduction to
grammar writing in Trale.3

2 Signature

Signature specifies a hierarchy of types, features (attributes) ap-
propriate to individual types, and values of these features.

(1) bot

a

F bool

G bool

b

F plus

G minus

c

F minus

G plus

bool

plus minus

The signature in (1) is written in Trale like this:

(2) type_hierarchy
bot

a f:bool g:bool
b f:plus g:minus
c f:minus g:plus

bool
plus
minus

.

• Signature is a separate file.

• First line: type_hierarchy

• Last line: full stop

1 http://utkl.ff.cuni.cz/~rosen/public/trale-manual.p df
2http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
3http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gra mandpars.pdf

• Types are Prolog terms, they should start with a lower-case
letter and consist of letters and numbers only.

• The most general type must be named bot and it is written
with no indentation following the first line.

• Subtypes are introduced in separate lines, with a consistent
level of increased indentation.

• Indent by two or more spaces, not by tabs.

• A type can have features, written after the type that intro-
duces them.

• Each feature is followed by a colon and the type of its value.

• The type of the value of a feature can be specified as an
arbitrary atom a_ . This type does not need to be defined
elsewhere and may be followed by _ as the anonymous va-
riable (3). By default, items in the PHON list are assumed to
be arbitrary atoms.

(3) type_hierarchy
bot

word cat:cat phon:(a_ _)
cat

noun
verb

.

A type can have more than one supertypes. This is an example
of multiple inheritance (4).

(4) gend

m f_mi n

ma mi f

Multiple inheritance is encoded in Trale as below (5): the type
occurs in the hierarchy under multiple supertypes and may be
preceded for clarity by the ampersand character &.

(5) gend
m

ma
&mi

f_mi
f
&mi

n

Every pair of types which have a common subtype must have
a unique most general common subtype. In (6) and its corre-
sponding Trale code (7) the two types nom_gen_dat and
nom_gen_acc have two common subtypes nom and gen wi-
thout a unique most general subtype. The compiler reports an
error (8).

(6) case

nom_gen_dat nom_gen_acc

dat nom gen acc

http://utkl.ff.cuni.cz/~rosen/public/trale-manual.pdf
http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gramandpars.pdf

Linguistic Theory and Grammar Formalisms: Trale – Syntax 2

(7)
case

nom_gen_dat
dat
&nom
&gen

nom_gen_acc
&nom
&gen
acc

(8) ALE: ERROR: consistent nom_gen_dat and

nom_gen_acc have multiple mgus: [nom,gen]

The cure is to insert the missing unique most general subtype,
see (9) and the corresponding Trale code (10).

(9) case

nom_gen_dat nom_gen_acc

nom_gen

dat nom gen acc

(10) case
nom_gen_dat

dat
&nom_gen

nom
gen

nom_gen_acc
&nom_gen
acc

3 Theory

Theory is the name for the ‘real’ Trale grammar, using the con-
cepts specified in signature. It is a separate file, named theory .
Signature provides possible objects used to model language en-
tities. Theory restricts these objects by lexical entries, phrase
structure rules, principles, relational constraints, lexical rules
and a few other constructs. To pick the right set of objects, the
constructs use descriptions. Complex descriptions can be formed
using logical connectives, the comma for logical conjunction be-
ing the most frequent connective.
The graphical description in (11) is expressed in Trale as (12).

(11)

word

CAT

HEAD verb

VAL

〈

1

[

CAT |HEAD noun
]

,

CAT

HEAD verb

VAL

〈

1

〉

〉

(12) (word,
cat:(head:verb,

val:[(X,cat:head:noun),
(cat:(head:verb,

val:[X]))]))

Comma within a list is not a logical connective but separates list
items. The boxed number preceding a feature structure is ex-
pressed as a conjuction of the variable and the feature structure.

3.1 Descriptions

<desc> ::=
<type>
. . . according to signature, refers to all objects of that type
| <variable>
. . . starts with upper case, refers to any object, multiple
occurrences of the same variable must refer to the same varia-
ble
| (<feature>:<desc>)
. . . picks out objects whose value for the feature satisfies the
nested description
| (<desc>,<desc>)
. . . logical conjuction
| (<desc>;<desc>)
. . . logical disjunction
| @ <macro_spec>
. . . macro call
| <func_spec>
. . . function
| a_ <prolog_term>
. . . atom not defined in signature
| <path> == <path>
. . . equation, satisfied by objects that are token-identical
| (=\= <desc>)
. . . inequation, satisfied by objects that are not token-identical to
objects described by <desc>, a space should occur between =\=
and a preceding operator
([arg1]==[arg2]) is equivalent to (arg1:X,arg2:X) .

Operator precedence and association

a, b ; c, d ; e = (a,b);(c,d);e
a,b,c = a,(b,c)
f:g:bot,h:j = (f:(g:bot)),(h:j)
f:g: =\=k,h:j = (f:(g: =\=(k))),(h:j)
f:[g]==[h],h:j = (f:([g]==[h])),(h:j)

3.2 Lexical entries

<atom> ~~> <desc>

The <atom> is the orthography of the word, by default it beco-
mes the single item of the PHON list.

kluk ~~> (word,
cat:(noun,

pdgm:(a_ pán),
case:nom,
agr:(num:sg,

gend:ma))).

3.3 Phrase structure rules

The rules are constraints of a special type: they implicitly relate
the mother’s and the daughter’s PHON lists. They are equiva-
lent to rules of a context-free phrase structure grammar: the mo-
ther’s PHON list is the concatenation of the daughter’s PHON
lists, in the order of their appearance in the rule.

Linguistic Theory and Grammar Formalisms: Trale – Syntax 3

3.3.1 Simple rules

<rule> ::=
<rule_name> ##
<desc> ===>
cat> <desc>
cat> <desc>.

The <desc> following ## stands for the syntactic mother. The
<desc> following cat> stands for a syntactic daughter.

headfin_c ##
(hc_phrase,

h_init:minus,
head_dtr:Head,
nonh_dtr:NonH)

===>
cat> NonH,
cat> Head.

The rule above can be depicted like this:

hc_phrase

H_INIT minus

HEAD_DTR 1

NONH_DTR 2

−→ 1 2

3.3.2 More complex rules

<rule> ::=
<rule_name> ## <desc> ===> <rule_body>.

<rule_body> ::=
<rule_clause>
| <rule_clause>, <rule_body>

<rule_clause> ::=
cat> <desc>
| cats> <desc>
| goal> <goal>

The <desc> following cats> gives a list of syntactic daughters.
The <goal> stands for a procedural attachment.

schema2 ##
(cat:(head:Head,

subcat:[Subj]))
===>
cat>
(cat:(head:Head,

subcat:[Subj|Comps])),
cats> Comps.

backward_application rule
(synsem:Z,

qstore:Qs)
===>
cat>
(synsem:Y,

qstore:Qs1),
cat>
(synsem:(backward,

arg:Y,
res:Z),
qstore:Qs2),

goal>
append(Qs1,Qs2,Qs).

3.4 Principles

Principles are equivalent to logical implications, they apply to
all objects, provided that the object matches the antecedent.

<principle> ::=
<desc> * > <princ_clause>.

<princ_clause> ::=
<desc>
| <desc> <goal>

The <desc> before * > stands for a description without functi-
ons or inequations.

(val,subj:ne_list) * > subj:[_].

3.5 Macros

Macros are used to abbreviate repeatedly occuring descriptions.
They can have any number of arguments, and the arguments
can be “guarded” by a type – the argument must then be of that
type.

n(X-case) := (word, cat:(noun, case:X)).
pepa ~~> @n(nom).

Themacro is defined as having one argument, and the argument
must be of the type case. The macro is called in a lexical entry.

3.6 Relational constraints

Relational constraints give Trale the power of the programming
language Prolog. They can be defined in a usual way and invo-
ked in a goal clause, or in a functional notation and used inside
descriptions at the position where the result should occur.

3.6.1 Relations

append([],L,L) if true.
append([H|T],L,[H|Res]) if append(T,L,Res).

Some relations can take a long time to evaluate or they may pre-
vent the parsing process from terminating. A prudent grammar
writer includes when/2 clauses to delay the evaluation of a re-
lation before enough information is known about its arguments.

append(X,Y,Z) if
when((X=(e_list;ne_list)

; Y=e_list
; Z=(e_list;ne_list)

),
undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.
undelayed_append([],(L,ne_list),L) if true.
undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

Linguistic Theory and Grammar Formalisms: Trale – Syntax 4

3.6.2 Functional notation

% append(+,+,-) This append assumes that the first or the thi rd
% argument are known to be non_empty or empty lists.
%

fun append(+,+,-).
append(X,Y,Z) if

when((X=(e_list;ne_list);
Z=(e_list;ne_list))

, undelayed_append(X,Y,Z)
).

undelayed_append([],L,L) if true.
undelayed_append([H|T1],L,[H|T2]) if append(T1,L,T2).

3.7 Lexical Rules

Lexical rules are used to derive lexical entries at compile time
from those already specified. They can be used to derive word
forms from a base form or other word forms. The description on
the left-hand side is replaced by the description on the left-hand
side, any identities must be explicitly mentioned.

<lex_rule> ::=
<lex_rule_name> lex_rule <lex_rewrite>
morphs <morphs>.

<lex_rewrite> ::=
<desc> ** > <desc>
| <desc> ** > <desc> if <goal>

<morphs> ::=
<morph>
| <morph>, <morphs>

<morph> ::=
(<string_pattern>) becomes (<string_pattern>)
| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>
<string_pattern> ::=

<atomic_string_pattern>
| <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::=
<atom>
| <var>
| <list(<var_char>)>

<var_char> ::= <char>

The following example rule derives English plural nouns and
includes the definition of a relational constraint.

plural_n lex_rule
(n,

num:sing)

** >
(n,

num:plu)
morphs
goose becomes geese,
[k,e,y] becomes [k,e,y,s],
(X,man) becomes (X,men),
(X,F) becomes (X,F,es) when fricative(F),
(X,ey) becomes (X,[i,e,s]),
X becomes (X,s) if true.

fricative([s]) if true.
fricative([c,h]) if true.

fricative([s,h]) if true.
fricative([x]) if true.

The becomes clauses can also be replaced by a single clause
invoking an appropriate relational constraint:
X becomes Y when morph_plural(X,Y).

3.8 Comments

Comments are preceded by%

3.9 Display options

3.9.1 Hiding features

Features that should not be displayed in the graphical interface.

hidden_feat(dtrs).

3.9.2 Feature ordering

Alters the default alphabetic ordering in the graphical interface.
f <<< g. Meaning: f will be ordered before g.
<<< h. Meaning: h will be ordered last.
>>> i. Meaning: i will be ordered first.

3.10 Test sequences

Test items are encoded as t/5 facts:

t(Nr,‘‘Test Item’’,Desc,ExpSols,’Comment’).

Nr : test item ID number
Test Item : test string, must be enclosed in double-quotes
Desc : optional start category description, leave uninstantiated
to get all possible parses
Comment: optional comment, enclosed in single-quotes

3.11 Technical specifications

may be version-dependent

:- discontiguous ’ * >’/2.
:- discontiguous ’fun’/1.
:- discontiguous ’if’/2.
:- tree_extensions.
:- multifile if/2.

	Links
	Signature
	Theory
	Descriptions
	Lexical entries
	Phrase structure rules
	Simple rules
	More complex rules

	Principles
	Macros
	Relational constraints
	Relations
	Functional notation

	Lexical Rules
	Comments
	Display options
	Hiding features
	Feature ordering

	Test sequences
	Technical specifications

