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How to write a Trale grammar

This is meant as introduction and for basic reference. See § 1 be-
low for pointers to more detailed reading and sample grammars
to get a better understanding of Trale.
Trale is an extension of ALE, an older grammar writing soft-
ware, based on the programming language Prolog. Previous ex-
posure to Prolog is a plus. Slightly modified Prolog code may be
used within Trale.

1 Links

If you haven’t installed and tried Trale yet, seeHow to install and
run Trale.
To learn more about Trale and Trale grammars you should con-
sult the Trale manual.1 and/or see the Trale download web
page with more links, including more detailed documentation.
2 There is also a textbook that provides a good introduction to
grammar writing in Trale.3

2 Signature

Signature specifies a hierarchy of types, features (attributes) ap-
propriate to individual types, and values of these features.

(1) bot







a

F bool

G bool













b

F plus

G minus













c

F minus

G plus







bool

plus minus

The signature in (1) is written in Trale like this:

(2) type_hierarchy
bot

a f:bool g:bool
b f:plus g:minus
c f:minus g:plus

bool
plus
minus

.

• Signature is a separate file.

• First line: type_hierarchy

• Last line: full stop

1 http://utkl.ff.cuni.cz/~rosen/public/trale-manual.p df
2http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
3http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gra mandpars.pdf

• Types are Prolog terms, they should start with a lower-case
letter and consist of letters and numbers only.

• The most general type must be named bot and it is written
with no indentation following the first line.

• Subtypes are introduced in separate lines, with a consistent
level of increased indentation.

• Indent by two or more spaces, not by tabs.

• A type can have features, written after the type that intro-
duces them.

• Each feature is followed by a colon and the type of its value.

• The type of the value of a feature can be specified as an
arbitrary atom a_ . This type does not need to be defined
elsewhere and may be followed by _ as the anonymous va-
riable (3). By default, items in the PHON list are assumed to
be arbitrary atoms.

(3) type_hierarchy
bot

word cat:cat phon:(a_ _)
cat

noun
verb

.

A type can have more than one supertypes. This is an example
of multiple inheritance (4).

(4) gend

m f_mi n

ma mi f

Multiple inheritance is encoded in Trale as below (5): the type
occurs in the hierarchy under multiple supertypes and may be
preceded for clarity by the ampersand character &.

(5) gend
m

ma
&mi

f_mi
f
&mi

n

Every pair of types which have a common subtype must have
a unique most general common subtype. In (6) and its corre-
sponding Trale code (7) the two types nom_gen_dat and
nom_gen_acc have two common subtypes nom and gen wi-
thout a unique most general subtype. The compiler reports an
error (8).

(6) case

nom_gen_dat nom_gen_acc

dat nom gen acc

http://utkl.ff.cuni.cz/~rosen/public/trale-manual.pdf
http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gramandpars.pdf
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(7)
case

nom_gen_dat
dat
&nom
&gen

nom_gen_acc
&nom
&gen
acc

(8) ALE: ERROR: consistent nom_gen_dat and

nom_gen_acc have multiple mgus: [nom,gen]

The cure is to insert the missing unique most general subtype,
see (9) and the corresponding Trale code (10).

(9) case

nom_gen_dat nom_gen_acc

nom_gen

dat nom gen acc

(10) case
nom_gen_dat

dat
&nom_gen

nom
gen

nom_gen_acc
&nom_gen
acc

3 Theory

Theory is the name for the ‘real’ Trale grammar, using the con-
cepts specified in signature. It is a separate file, named theory .
Signature provides possible objects used to model language en-
tities. Theory restricts these objects by lexical entries, phrase
structure rules, principles, relational constraints, lexical rules
and a few other constructs. To pick the right set of objects, the
constructs use descriptions. Complex descriptions can be formed
using logical connectives, the comma for logical conjunction be-
ing the most frequent connective.
The graphical description in (11) is expressed in Trale as (12).

(11)


























word

CAT





















HEAD verb

VAL

〈

1

[

CAT |HEAD noun
]

,





CAT





HEAD verb

VAL

〈

1

〉











〉















































(12) (word,
cat:(head:verb,

val:[(X,cat:head:noun),
(cat:(head:verb,

val:[X]))]))

Comma within a list is not a logical connective but separates list
items. The boxed number preceding a feature structure is ex-
pressed as a conjuction of the variable and the feature structure.

3.1 Descriptions

<desc> ::=
<type>
. . . according to signature, refers to all objects of that type
| <variable>
. . . starts with upper case, refers to any object, multiple
occurrences of the same variable must refer to the same varia-
ble
| (<feature>:<desc>)
. . . picks out objects whose value for the feature satisfies the
nested description
| (<desc>,<desc>)
. . . logical conjuction
| (<desc>;<desc>)
. . . logical disjunction
| @ <macro_spec>
. . . macro call
| <func_spec>
. . . function
| a_ <prolog_term>
. . . atom not defined in signature
| <path> == <path>
. . . equation, satisfied by objects that are token-identical
| (=\= <desc>)
. . . inequation, satisfied by objects that are not token-identical to
objects described by <desc>, a space should occur between =\=
and a preceding operator
([arg1]==[arg2]) is equivalent to (arg1:X,arg2:X) .

Operator precedence and association

a, b ; c, d ; e = (a,b);(c,d);e
a,b,c = a,(b,c)
f:g:bot,h:j = (f:(g:bot)),(h:j)
f:g: =\=k,h:j = (f:(g: =\=(k))),(h:j)
f:[g]==[h],h:j = (f:([g]==[h])),(h:j)

3.2 Lexical entries

<atom> ~~> <desc>

The <atom> is the orthography of the word, by default it beco-
mes the single item of the PHON list.

kluk ~~> (word,
cat:(noun,

pdgm:(a_ pán),
case:nom,
agr:(num:sg,

gend:ma))).

3.3 Phrase structure rules

The rules are constraints of a special type: they implicitly relate
the mother’s and the daughter’s PHON lists. They are equiva-
lent to rules of a context-free phrase structure grammar: the mo-
ther’s PHON list is the concatenation of the daughter’s PHON
lists, in the order of their appearance in the rule.
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3.3.1 Simple rules

<rule> ::=
<rule_name> ##
<desc> ===>
cat> <desc>
cat> <desc>.

The <desc> following ## stands for the syntactic mother. The
<desc> following cat> stands for a syntactic daughter.

headfin_c ##
(hc_phrase,

h_init:minus,
head_dtr:Head,
nonh_dtr:NonH)

===>
cat> NonH,
cat> Head.

The rule above can be depicted like this:










hc_phrase

H_INIT minus

HEAD_DTR 1

NONH_DTR 2











−→ 1 2

3.3.2 More complex rules

<rule> ::=
<rule_name> ## <desc> ===> <rule_body>.

<rule_body> ::=
<rule_clause>
| <rule_clause>, <rule_body>

<rule_clause> ::=
cat> <desc>
| cats> <desc>
| goal> <goal>

The <desc> following cats> gives a list of syntactic daughters.
The <goal> stands for a procedural attachment.

schema2 ##
(cat:(head:Head,

subcat:[Subj]))
===>
cat>
(cat:(head:Head,

subcat:[Subj|Comps])),
cats> Comps.

backward_application rule
(synsem:Z,

qstore:Qs)
===>
cat>
(synsem:Y,

qstore:Qs1),
cat>
(synsem:(backward,

arg:Y,
res:Z),
qstore:Qs2),

goal>
append(Qs1,Qs2,Qs).

3.4 Principles

Principles are equivalent to logical implications, they apply to
all objects, provided that the object matches the antecedent.

<principle> ::=
<desc> * > <princ_clause>.

<princ_clause> ::=
<desc>
| <desc> <goal>

The <desc> before * > stands for a description without functi-
ons or inequations.

(val,subj:ne_list) * > subj:[_].

3.5 Macros

Macros are used to abbreviate repeatedly occuring descriptions.
They can have any number of arguments, and the arguments
can be “guarded” by a type – the argument must then be of that
type.

n(X-case) := (word, cat:(noun, case:X)).
pepa ~~> @n(nom).

Themacro is defined as having one argument, and the argument
must be of the type case. The macro is called in a lexical entry.

3.6 Relational constraints

Relational constraints give Trale the power of the programming
language Prolog. They can be defined in a usual way and invo-
ked in a goal clause, or in a functional notation and used inside
descriptions at the position where the result should occur.

3.6.1 Relations

append([],L,L) if true.
append([H|T],L,[H|Res]) if append(T,L,Res).

Some relations can take a long time to evaluate or they may pre-
vent the parsing process from terminating. A prudent grammar
writer includes when/2 clauses to delay the evaluation of a re-
lation before enough information is known about its arguments.

append(X,Y,Z) if
when( ( X=(e_list;ne_list)

; Y=e_list
; Z=(e_list;ne_list)

),
undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.
undelayed_append([],(L,ne_list),L) if true.
undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).
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3.6.2 Functional notation

% append(+,+,-) This append assumes that the first or the thi rd
% argument are known to be non_empty or empty lists.
%

fun append(+,+,-).
append(X,Y,Z) if

when( (X=(e_list;ne_list);
Z=(e_list;ne_list))

, undelayed_append(X,Y,Z)
).

undelayed_append([],L,L) if true.
undelayed_append([H|T1],L,[H|T2]) if append(T1,L,T2).

3.7 Lexical Rules

Lexical rules are used to derive lexical entries at compile time
from those already specified. They can be used to derive word
forms from a base form or other word forms. The description on
the left-hand side is replaced by the description on the left-hand
side, any identities must be explicitly mentioned.

<lex_rule> ::=
<lex_rule_name> lex_rule <lex_rewrite>
morphs <morphs>.

<lex_rewrite> ::=
<desc> ** > <desc>
| <desc> ** > <desc> if <goal>

<morphs> ::=
<morph>
| <morph>, <morphs>

<morph> ::=
(<string_pattern>) becomes (<string_pattern>)
| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>
<string_pattern> ::=

<atomic_string_pattern>
| <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::=
<atom>
| <var>
| <list(<var_char>)>

<var_char> ::= <char>

The following example rule derives English plural nouns and
includes the definition of a relational constraint.

plural_n lex_rule
(n,

num:sing)

** >
(n,

num:plu)
morphs
goose becomes geese,
[k,e,y] becomes [k,e,y,s],
(X,man) becomes (X,men),
(X,F) becomes (X,F,es) when fricative(F),
(X,ey) becomes (X,[i,e,s]),
X becomes (X,s) if true.

fricative([s]) if true.
fricative([c,h]) if true.

fricative([s,h]) if true.
fricative([x]) if true.

The becomes clauses can also be replaced by a single clause
invoking an appropriate relational constraint:
X becomes Y when morph_plural(X,Y).

3.8 Comments

Comments are preceded by%

3.9 Display options

3.9.1 Hiding features

Features that should not be displayed in the graphical interface.

hidden_feat(dtrs).

3.9.2 Feature ordering

Alters the default alphabetic ordering in the graphical interface.
f <<< g. Meaning: f will be ordered before g.
<<< h. Meaning: h will be ordered last.
>>> i. Meaning: i will be ordered first.

3.10 Test sequences

Test items are encoded as t/5 facts:

t(Nr,‘‘Test Item’’,Desc,ExpSols,’Comment’).

Nr : test item ID number
Test Item : test string, must be enclosed in double-quotes
Desc : optional start category description, leave uninstantiated
to get all possible parses
Comment: optional comment, enclosed in single-quotes

3.11 Technical specifications

may be version-dependent

:- discontiguous ’ * >’/2.
:- discontiguous ’fun’/1.
:- discontiguous ’if’/2.
:- tree_extensions.
:- multifile if/2.
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